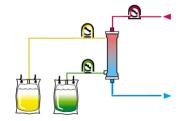
... Must come out

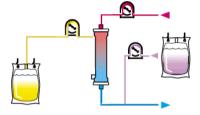
(Renal Replacement Therapy Update)

Paul Gamble

No Disclosures / COIs (except I'm not an anaesthetist!)


Learning Objectives

- 1. Understand the modalities of RRT available in ICU and factors which determine choice
- Consider the advantages and disadvantages of options for anticoagulation in RRT
- 3. Discuss appropriate timing of RRT in ICU


RRT modalities

Intermittent	Continuous
Haemodialysis	Haemofiltration
Hybrid systems	Peritoneal Dialysis

Haemodialysis

Haemofiltration

Comparison of HF and HD

Haemodialysis	Haemofiltration			
Diffusion	Convection			
Faster small molecule clearance	High flux (middle molecule clearance)			
Counter current flow	Higher fluid replacement (labour intensive)			
	Higher risk of clotting (reduced circuit life)			
No difference in mortality				

Hybrid systems

- SLED (sustained low efficiency dialysis)
- CVVHDF (continuous veno-venous haemodiafiltration)

Table 22 | Theoretical advantages and disadvantages of CRRT, IHD, SLED, and PD

Modality	Potential setting in AKI	Advantages	Disadvantages
IHD	Hemodynamically stable	Rapid removal of toxins and low-molecular-weight substances Allows for "down time" for diagnostic and therapeutic procedures Reduced exposure to anticoagulation Lower costs than CRRT	Hypotension with rapid fluid removal Dialpisis disequilibrium with risk of cerebral edema Technically more complex and demanding
CRRT	Hemodynamically unstable Patients at risk of increased intracranial pressure	Continuous renoval of toxins Hemodynamic stability Easy control of fluid balance No treatment-induced increase of intracranial pressure User-friendly machines	Slower clearance of toxins Need for prolonged anticoagulation Patient immobilization Hypothermia Increased costs
SLED	Hemodynamically unstable	Slower volume and solute removal Hemodynamic stability Allows for "down time" for diagnostic and therapeutic procedures Reduced exposure to anticoagulation	Slower clearance of toxins Technically more complex and demanding
PD	Hemodynamically unstable Coagulopathy Difficult access Patients at risk of increased intracranial pressure Under-resourced region	Technically simple Hemodynamic stability No androcagulation No need for vascular access Lower cost Gradual removal of toxins	Poor clearance in hypercatabolic patients Protein loss No control of rate of fluid removal Risk of peritonitis Hypenglycemia Requires intact peritoneal cavity Impairs diaphragmatic movement, potential for respiratory problems

2887, continuous renal replacement therapy: IHD, intermittent hemodialysis; PD, peritoneal dialysis; SLED, sustained low-efficiency dialysis.

RRT modalities

- Many modalities available
- No major clinical superiority of any 1 modality over another
- Choice is determined by local factors expertise, cost, connectivity

Anticoagulation for RRT

- None
- Unfractionated heparin
- Low molecular weight heparin
- Regional citrate
- Others

Regional citrate vs systemic heparin

Benefits of RCA	Limitations
Reduced risk of bleeding	Complicated
Improved patency of circuits	Risk of citrate accumulation
Increased delivered dose of RRT *	Strict protocols
More cost effective *	Monitoring of calcium levels to avoid hypocalcaemia

RCA Protocols

Timing of initiation of RRT

Table 2| Benefits and drawbacks of earlier RRT in the absence of conventional indications among critically ill patients with AKI Benefits Drawbacks

accents windows and/or early control of flad accumulation and overhead downgrownen horizons and/or antire control of observations horizons and/or antire control of complications minimumon/add/add/or and/or antire control "biologication" horizons and company and horizons and/or antire complications "biologication" horizons and/or antire complication "biologication" horizons and/or antire complexity of the horizons antire complexity of the horizons and/or antire complexity of the horizons antire compl

Need for and complications associated with dialysic achiever transform (a, b)leading, per-unstroken, kondorarean infectional based for and complications associated with acticus/patients in the al engineering equipation of the activity of the Risk of encores lates of unreaseauxed microarchitects and those elements Risk of encores lates of unreaseauxed microarchitects and those elements Risk of encores lates of unreaseauxed microarchitects and those elements (b, e. effectores), anti-patients (b, e. effectores), and those elements (b, e. effectores), anti-patients (b, e. effectores), and those elements (b, e. effectores), anti-patients (b, e. effectores), and those elements becrussed besides workshall for perioders, resource use, and direc heads to asso.

kidneys ARI, acute kidney injury; BRT, renal replacement therapy. Comparison of RCTs in timing of RRT in ICU

	ELAIN	AKIKI	IDEAL-ICU	STARRT-AKI (pilot)
Setting	1 ICU in Germany	31 ICUs in France	24 ICUs in France	12 ICUs in Canada
No. of Participants	231	620	488	100
Population	95% surgical (cardiac 47%)	80% medical	Septic shock	Mixed medical/surgical
Intervention (early arm)	Within 8 hours of stage 2 AKI	Within 6 hours of stage 3 AKI	Within 12 hours of stage 3 AKI	Within 12 hours of stage 2 AKI (+NGAL)
Control (delayed arm)	Within 12 hours of stage 3 AKI	Specific criteria/emergent indications	48-60 hours of stage 3 AKI	Specific criteria/emergent indications
Received RRT in control arm	91%	51%	62%	75%
90 day mortality		(60 day mortality)		
Early	39.3%	48.5%	58%	38%
Control	54.7%	49.7%	54%	37%

Timing of AKI

- In patients with predictable natural history of AKI then early RRT may be beneficial
- In patients with multi-factorial AKI (most medical patients) there is no current proven benefit for early RRT compared to standard care
- START-AKI has finished recruiting 3000 patients so will hopefully give an answer

Learning Objectives

- Understand the modalities of RRT available in ICU and factors which determine choice
 There are many
- Local factors determine choice
- 2. Consider the advantages and disadvantages of options for anticoagulation in RRT
- RCA preferred but complex protocols and monitoring 3. Discuss appropriate timing of RRT in ICU
 - Not sure ask me next year!

Questions

?

References

- KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements (2012) 2:1
 When to start renal replacement therapy in critically ill patients with acute kidney injury: comment on AKIK and ELAIN. Bagshaw et al. Critical Care (2016) 20:245
 Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Bagshaw et al. Kidney International (2017) 91:1022-32
 Hemofiltration compared to hemodialysis for acute kidney injurt: a systematic review and meta-analysis. Freidrich et al. Critical Care (2012) 16:R146
- Renal replacement therapy and anticoagulation. Brandenburger et al. Best Practice & Research Clinical Anaesthesiology, (2017) 387-401 Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Bagshaw et al. Intensive Care Med (2017) 43:841-854