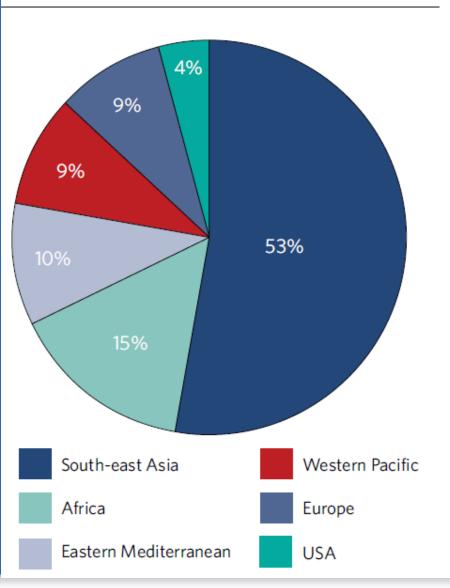
Anaesthesia for Burns

Shiv Chavan MD FRCA EDRA

Consultant Anaesthetist
Lead for Burn Anaesthesia
Midlands Burn Centre, QEHB
Birmingham



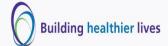
Objectives

- Initial assessment and management of major burn injury
- Management of immediate causes of death
- Anaesthetic challenges
- Pain management
- Sedation/anaesthesia for dressing changes

FIGURE 1: Regional distribution of fire-related mortality⁶

f Burn Injury

- A global crisis
 affecting nearly 6.6
 million a year
- Most burn injuries involves women and children
- Majority of burn victims are in developing countries



Prevalence of Burn in UK

- 250,000 Burn injuries a year in UK
- 175,000 will attend ED
- 13,000 will get admitted
- Nearly 1000 pt a year need fluid resuscitation
- Nearly 300 deaths a year in UK

www.britishburnassociation.org/downloads/NBCR2001.pdf

Management of Burn in UK

- Burn Operational and Delivery Network
 - Burn facility
 - Burn unit
 - Burn centre

www.britishburnassociation.org/downloads/NBCR2001.pdf

Birmingham Burn Centre


Over last five years:

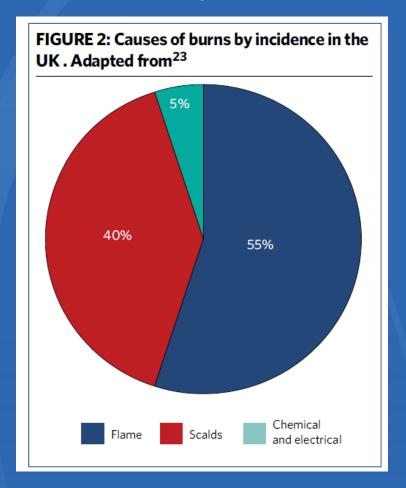
– Total admissions: 2049

– ITU admissions : 212(10%)

Resus patients : 247 (12%)

- Mortality : 117 (5.7%)

- Mechanism
- Type of burn
- Associated incidents
- Other casualties
- Damage to the site



- Mechanism:
 - Accidental
 - Self Inflicted
 - Contact burn
 - Associated trauma(high speed/blast/fall)
 - Indoor/outdoor
 - Mass casualty scenarios

- Type of burn:
 - Flame/Thermal
 - Scald
 - Electrical
 - Chemical
 - Radiation
 - Cold

- Associated incidents:
 - Collapse of house, arson, explosion
- Indoor/Outdoor:
 - Associated with inhalation injuries
- Mass casualties:
 - Usually have other injuries
 - Resource allocation

Initial Management: First Aid

Stop the burning process

- Remove the person from source of burn
- Extinguish fire with water/Stop, drop, roll
- Isolate electrical power source, avoid chemical cross contamination
- Remove clothes/jewellery

Cool the burn

- Running tap water for 20 minutes within 3 hours
- If limited water, then cover with wet lint free cloth
- If no water, apply longitudinal cling film
- Prevent hypothermia
- Immediate transfer to medical facility/Burn centre

https://www.britishburnassociation.org/wp-content/uploads/2017/06/BBA-First-Aid-Guideline-24.9.18.pdf

Management in ED

- ATLS Principles
- Treat immediate life threatening conditions
 - Hypoxia (airway obstruction, CO/Cyanide poisoning)
 - Shock (hypovolemia, tension pneumothorax, cardiac tamponade etc)
- Secure airway
- Fluid resuscitation
- Lines/Catheter
- Keep the patient warm!

http://www.midlandsburnnetwork.nhs.uk/website/X00001/files/3%20WoundInternationalBestPracticeGuidelinesNonComplex.pdf

Airway management

- Endotracheal Intubation at the earliest opportunity
- Secure the ETT well
- No reinforced tube
- DO NOT CUT THE TUBE

Airway management

- Endotracheal Intubation at the earliest opportunity
- Secure the ETT well
- No reinforced tube
- DO NOT CUT THE TUBE

Airway

Early intubation if;

- altered consciousness
- burned face/oropharynx
- hoarseness/stridor
- soot in nostrils/sputum
- expiratory rhonchi
- dysphagia or dribbling

Criteria for Intubation

Table 1 – ABA and traditional indications for intubation of the patient with thermal burns.

Indications for intubation

2011 ABA guidelines

- Full thickness facial burns
- Stridor
- Respiratory distress
- Swelling on laryngoscopy
- Upper airway trauma
- Altered mentation
- Hypoxia/hypercarbia
- Hemodynamic instability

Traditional

- Suspected smoke inhalation
- Oropharynx soot
- Hoarseness
- Dysphagia
- Singed facial hair
- Oral edema
- Oral burn
- Non-full thickness facial burn

Cyanide Poisoning

- Common in house fires with burning of plastic/leather
- Associated with inhalation injury
- Diagnosis by ruling out other causes of unconsciousness
- Unexplained LOC with significant un responsive acidosis
- Specific management: Cynokit

L MacLennan, N Moiemen: *Management of cyanide toxicity in patients with burns injury. Burns* 41(2015) 18-24

Breathing

- Humidified high concentration Oxygen for IPPV
- Lung protective ventilation
- Early bronchoscopy and bronchial lavage
- Mucolytic nebulisations
- Chest physiotherapy
- Chest wall restriction

Review

The diagnosis and management of inhalation injury: An evidence based approach

C.J. Deutsch^{a,*}, A. Tan^{a,b}, S. Smailes^a, P. Dziewulski^{a,b}

^a St. Andrew's Centre for Plastic Surgery and Burns, Chelmsford, United Kingdom ^b StAAR Research Unit, Faculty of Medical Sciences, Anglia Ruskin University, 1-2 Bishop Hall Lane, CM1 1SQ, Chelmsford, United Kingdom

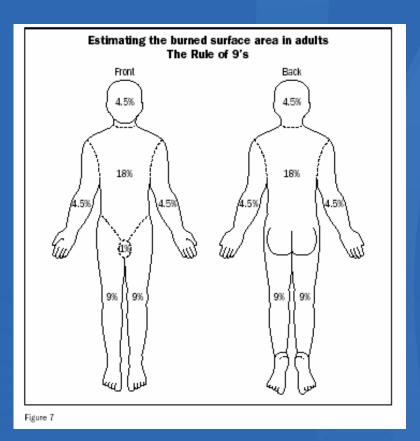
Chest wall restriction

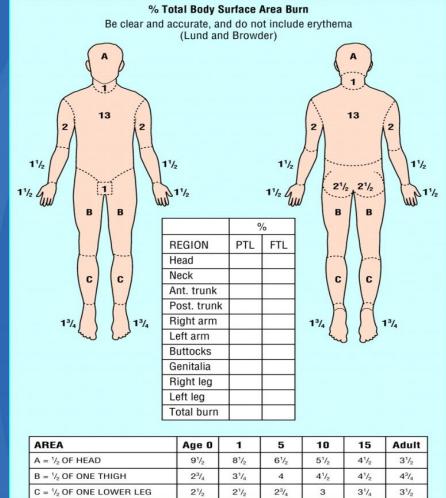
Circulation

- Significant fluid loss (evaporation)
- Base deficit/Haematocrit
- Sticky blood, increased risk of thrombosis
- More than 15% in adult and 10% in children will need fluid resuscitation
- The fluid resuscitation should start as early possible

Parkland Formula 1968

Hartmann's volume for 24 hrs:


%TBSA x Wt (Kg) x 4


1/2 given in the 1st 8 hrs

1st Period = 8 hrs 2nd Period = 16 hrs

Estimation of surface area

Circulation: Burns Resuscitation Which Fluid?

- Crystalloids
- Colloids
- Albumin (Plasma Protein Solution)
- Plasma Substitutes

Role of Albumin in Burns

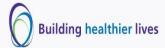
- Two Meta-analysis in the past two years
- Both considered small number of studies
- Heterogeneity in the patient groups
- No conclusive evidence in support of albumin

Role of Albumin in Burns

Study or Subgroup	Albumin		Control		Risk Ratio		Risk Ratio	
	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Cooper 2006	3	19	1	23	14.2%	3.63 [0.41, 32.13]		
Goodwin 1983	11	25	3	25	32.0%	3.67 [1.16, 11.58]	-	
Jelenko 1978	1	7	3	12	15.5%	0.57 [0.07, 4.49]		
Recinos 1975	5	14	6	15	38.3%	0.89 [0.35, 2.28]	-	
Total (95% CI)		65		75	100.0%	1.60 [0.63, 4.08]	-	
Total events	20		13					
Heterogeneity: $Tau^2 = 0.37$; $Chi^2 = 5.12$, $df = 3$ (P = 0.16); $I^2 = 41\%$						%	004 04 4 40	400
Test for overall effect: $Z = 0.98$ (P = 0.33)							0.01 0.1 1 10 1 Favours [experimental] Favours [control]	100

Fig. 2 - Effect of albumin administration on mortality.

Heterogeneity:
$$I^{*}$$
, 00.0% (CI, $23.8-84.8\%$); $P=.007$

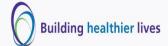

Randomized vs. nonrandomized:

ROR, 4.17 (CI, $0.72-24.1$); $P=.11$

OR (CI)

† Adjusted by multivariate logistic regression

Figure 2. Mortality after burn shock resuscitation with albumin infusion. Data points for individual studies scaled in proportion to meta-analytic weight. Error bars depict CI. CI, 95% confidence interval; OR, odds ratio; ROR, ratio of odds ratios.


Albumin

- Reduced ventilation days
- Reduced mortality
- But, the authors still conclude that further studies are required!!
- Certainly reduces the abdominal compartment syndrome
- Our unit...not aggressive albumin user!

Fluid Resuscitation

- Parkland's formula is still most commonly used
- Inaccurate
- Burn shock
- Burn SIRS
- Aim for urine output
- ?Invasive monitoring

How Anaesthetists are Involved

- Initial Resuscitation
- Transfers
- Intensive Care
- Theatre
- Dressing Changes
- Analgesia
- Reconstruction

Initial Theatre Visit

- Mostly for:
 - Thorough assessment
 - Airway-wiring ETT
 - Breathing- Bronchoscopy
 - Circulation- lines, NG tube, catheter
 - Disability and exposure: Escharotomies, good cleaning, mind the temperature

Anaesthetic Challenges

- Monitoring:
 - Most reliable are arterial BP, UO, ABGs
- Secure tubes/lines:
- Blood loss
- Temperature

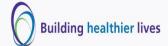
Repeat theatre trips

- Prolonged surgery
- Blood loss
- Temperature control
- Positioning
- Monitoring
- Usually done by week day burn teams

Reconstruction

- Airway
- Venous access
- Suxamethonium
- Pain management
- Use of Regional anaesthesia

Dressing Changes


- Problems
 - Anxiety
 - Venous access
 - Pain
 - Nutrition
 - Post procedure sedation

Dressings changes

- Done either in theatre, ITU or ward
- Most often involve shower
- Monitoring and IV access concerns

Dressing changes

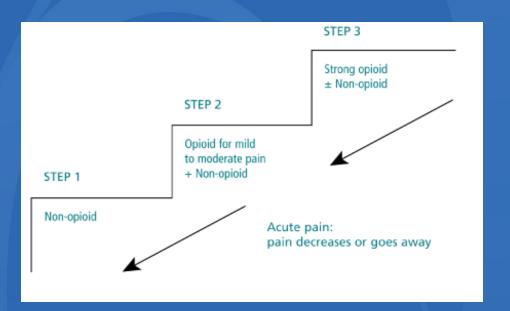
Options

Ketamine Midazolam

GA

Opioids

Entonox


Propofol Remifentanil

Grin and bear it!

Pain management

- Mainly Opioid based in acute stages
- Regular paracetamol
- Early use of Pregabalin/Gabapentin
- Careful consideration if NSAIDs to be used
- Pruritis contributes to acute/chronic pain

MDT

- One of the core standard set up by ISBI
- Team includes almost everyone responsible for "functional resuscitation and rehabilitation" of burns patient
- QEHB: Once week
- Network meetings: Four times a year

Summary

- Identify and treat immediate life threatening conditions
- Low threshold for definitive airway
- Fluid resuscitation with crystalloids
- Multi disciplinary team approach during acute phase helps functional resuscitation and rehabilation

